

## ORIGINAL ARTICLE

**Safety of transesophageal echocardiography (TEE)-A 10 year experience at a tertiary care cardiac institute.**Azmat Ehsan Qureshi<sup>1</sup>, Najeeb Ullah<sup>2</sup>, Farid Ahmad Chaudhary<sup>3</sup>, Ali Ammar Shakeel<sup>4</sup>, Mehroze Sajjad Khan<sup>5</sup>, Umer Farooq<sup>6</sup>

**ABSTRACT... Objective:** To assess the safety profile, major and minor complications, and risk mitigation strategies associated with TEE. **Study Design:** Retrospective observational study. **Setting:** Rehmat-ul-lil-Alameen postgraduate institute of Cardiology (RAIC), PESSI, Lahore. **Period:** Ten-year data focusing on TEE procedures (September 2014 to March 2025) was utilized. **Methods:** A total of 358 procedures were studied, carried out by 02 consultant cardiologists. In addition to demographic data, variables including indications and complications of TEE were studied. Statistical analysis was performed using SPSS Version 22. **Results:** TEE is proved to be generally safe, with major complications occurring in 0.2% of cases. There was no procedure related mortality. Minor complications, such as odynophagia, throat discomfort and minor pharyngeal bleed, were also uncommon (5.02%). The most common indication of diagnostic TEE was assessment of atrial septal defect 102(31.0%) while in case of intraoperative TEE, the most common indication was minimally invasive cardiac surgery 20(66.0%). The most common TEE complication (minor) was odynophagia that occurred in 1.3% of the population. **Conclusion:** While TEE has an excellent safety profile, clinicians must remain vigilant to prevent and promptly manage complications. Proper patient selection, adherence to guidelines, and operator expertise are crucial for ensuring patient safety. Future advancements in probe design and sedation protocols may further reduce risks.

**Key words:** Complications, Esophageal Perforation, Procedural Safety, Transesophageal Echocardiography (TEE).**Article Citation:** Qureshi AE, Najeeb Ullah, Chaudhary FA, Shakeel AA, Khan MS, Farooq U. Safety of transesophageal echocardiography (TEE)-A 10 year experience at a tertiary care cardiac institute. Professional Med J 2026; 33(02):243-248. <https://doi.org/10.29309/TPMJ/2026.33.02.9862>**INTRODUCTION**

Transesophageal echocardiography (TEE) has revolutionized cardiovascular diagnostics by providing unparalleled imaging of cardiac structures, surpassing the capabilities of conventional transthoracic echocardiography (TTE). By positioning an ultrasound probe within the esophagus, TEE offers enhanced visualization of posterior cardiac anatomy, making it indispensable for evaluating valvular pathology, intracardiac shunt, intracardiac thrombi, endocarditis, and aortic dissection.<sup>1</sup> Its utility extends beyond diagnostics to perioperative monitoring during cardiac surgery and structural interventions, where real-time imaging guides clinical decision-making.<sup>2</sup>

Despite its widespread use and clinical benefits, TEE remains an invasive procedure that carries inherent risks. The insertion of a probe through the oropharynx and esophagus can lead to mechanical trauma, while sedation—often required for patient

comfort—introduces additional physiological risks.<sup>3</sup> Although major complications such as esophageal perforation or severe bleeding are rare (<1%), their consequences can be life-threatening.<sup>4</sup> More commonly, minor complications such as oropharyngeal injury, transient hypoxia, or arrhythmias may occur, emphasizing the need for meticulous procedural technique and patient selection.<sup>5</sup>

Given the expanding indications for TEE, including its growing use in critically ill and elderly patients with multiple comorbidities, a thorough understanding of its safety profile is essential. Current guidelines from the American Society of Echocardiography (ASE) and the Society of Cardiovascular Anesthesiologists (SCA) provide standardized protocols to minimize risks.<sup>1</sup> However, variations in operator experience, patient factors, and procedural settings (e.g., emergency vs. elective TEE) can influence complication rates.

1. FCPS (Med), FCPS (Cardiology), Associate Professor Cardiology, Rehmatul-Lil-Alameen Postgraduate Institute of Cardiology, Lahore.

2. FCPS (Med), FCPS (Cardiology), Associate Professor Cardiology, Rehmatul-Lil-Alameen Postgraduate Institute of Cardiology, Lahore.

3. FCPS, Professor Cardiac Surgery, Rehmatul-Lil-Alameen Postgraduate Institute of Cardiology, Lahore.

4. FCPS, (Cardiology), Senior Registrar Cardiology, Rehmatul-Lil-Alameen Postgraduate Institute of Cardiology, Lahore.

5. FCPS (Cardiology), Consultant Cardiologist, Rehmatul-Lil-Alameen Postgraduate Institute of Cardiology, Lahore.

6. FCPS (Cardiology), Consultant Cardiologist, Rehmatul-Lil-Alameen Postgraduate Institute of Cardiology, Lahore.

**Correspondence Address:**

Dr. Azmat Ehsan Qureshi  
Department of Cardiology, Rehmatul-Lil-Alameen Postgraduate Institute of Cardiology (RAIC), PESSI, Multan Road, Lahore.  
aquareshi@hotmail.com

**Article received on:**

22/05/2025

**Date of revision:**

29/08/2025

**Accepted for publication:**

02/09/2025



This article reviews the safety and complications associated with TEE, drawing upon large-scale clinical studies and societal recommendations. By synthesizing current evidence, this study aims to enhance clinician awareness and optimize patient outcomes in the performance of TEE.

## METHODS

This Retrospective observational study (Single Centre experience) was conducted at Rehmat-ul-lil-Alameen Postgraduate Institute of Cardiology (RAIC), PESSI.

A total of 358 patients who underwent TEE were included in the study, it included both genders and all ages.

### Data Source / Measurement

Data was collected from the hospital database after obtaining approval from the Institutional review board & Ethical committee (IRB&EC) (RAIC PESSI/ Ett/2025/2893). TEE reports and patients' data notes (Pre, Intra & Postprocedural) were reviewed. Ten years (+) data was assessed i.e., from September 2014 to March 2025.

The variables studied included demographic data such as age and gender, indications, diagnosis and complications of TEE.

### Bias

Efforts were made to minimize the bias by ensuring complete data collection avoiding selection & informational bias.

All 358 patients who underwent TEE were included in the study to ensure adequate statistical power.

Quantitative valuables such as age, were described using measures of central tendency (Mean) and dispersion (Standard deviation).

### Statistical Methods

Statistical analysis was performed using SPSS statistical Version 22. Descriptive statistics were used to summarize the data, including calculations of means and standard deviations for continuous variables and percentage for categorical valuables.

All patients were assessed pre-procedure by the consultant cardiologist carrying out the procedure. All TEE procedure were carried out by two 2 operators (Consultant cardiologists: Assistant/ Associate professor cardiology). All patients had their labs done one-two days before the procedure including complete blood count (CBC), coagulation profile and viral markers. All patients were kept NPO for 6 hours before the procedure.

Written informed consent was taken from all patients on the day of procedure. Hemodynamic status was documented. Eleven (3.07%) patients were recorded as hemodynamically unstable. IV access was taken in every patient. Supplemental oxygen was used in 25(7%) patients. TEE were carried out for OPD patients in echocardiography room with patients in left lateral decubitus position. Local anesthesia (2% lignocaine spray) was used in all patients (except intraoperative TEE). No sedation was used in patients except in 04 patients. Out of these four, Midazolam IV was used in three patients while ketamine was used in fourth patient who was highly non-cooperative. Patient's pulse, BP, ECG rhythm and oxygen saturation were monitored during the procedure. Probe (Multiplane Toshiba Model-PET-510 MA) was inserted through the bite block except in patients undergoing intraoperative TEE. TEE was done on Toshiba Aplio artida Machines-Model SSH 880CV.

Maximum duration of TEE procedure reported was 26 minutes. There were reported 05 difficult insertions-02 because of patient non-cooperation while 03 because of anatomical issues (short neck).

TEE was successful in 356 patients. Two patients pulled out the probe during the procedure (interrupted procedure). No TEE was done as a part of percutaneous intervention.

All patients were observed post-procedure for at least 04 hours with vital monitoring and symptoms. All outdoor patients were discharged on the same day except one, who developed pulmonary oedema. He was discharged on next day in stable condition.

## RESULTS

A total of 358 TEE procedures were done during

the period; out of 358, 328 were diagnostic TEE procedure while 30 were intraoperative TEE. 175 (49%) were male patients while 183 (51%) were female patients. Average age among male patients was  $43.75 \pm 9.6$  years while average age among female patients was  $38.3 \pm 11.2$  years.

The most common indication of diagnostic TEE was assessment of atrial septal defect 102(31.0%), followed by Prosthetic valve assessment 71(21.6%). The most common indication of Intraoperative TEE was MICS (minimally invasive cardiac surgery) 20(66.0%).

The overall incidence of major complications was 0.2% while overall incidence of minor complications was 5.02%. There was no procedure related mortality. The most common TEE complication (minor) was odynophagia that occurred in 1.3% of the population.

Other complications included non-specific sore throat 04(1.1%), unsuccessful probe insertion 02(0.5%), interrupted procedure 02(0.5%), minor pharyngeal bleed 02(0.5%), self-limiting arrhythmia 01(0.2%), dysphagia 01(0.2%) and transient hoarseness 01(0.2%).

Only one major complication occurred i.e., patient developed pulmonary edema during the procedure. Was identified by drop in oxygen saturation and tachypnoea. He was a diagnosed case of aortic regurgitation. TEE was being done for assessing severity of aortic regurgitation & anatomy of aortic valve. Procedure was abandoned immediately. He was propped up and treated on lines of pulmonary oedema. He was shifted to CCU. Stabilized and was discharged in stable condition next day.

## DISCUSSION

Transesophageal echocardiography (TEE) is a cornerstone of modern cardiovascular imaging, offering superior visualization of cardiac structures compared to transthoracic echocardiography (TTE). However, as an invasive procedure, it carries inherent risks that must be carefully managed.<sup>6</sup> This discussion examines the safety profile of TEE, analyzes reported complications, and highlights strategies to minimize adverse events.

**TABLE-I**

**Baseline characteristics**

|              |            |
|--------------|------------|
| Total Number | 358 (100%) |
|--------------|------------|

**Gender**

|        |          |
|--------|----------|
| Male   | 175(49%) |
| Female | 183(51%) |

**AGE**

|                   |                 |
|-------------------|-----------------|
| AVG AGE (Males)   | $43.75 \pm 9.6$ |
| AVG AGE (Females) | $38.3 \pm 11.2$ |

**TABLE-II**

**Indications of TEE**

**Diagnostic TEE (328; 91%)**

| Indications                              | Number     |
|------------------------------------------|------------|
| 1. ASD assessment                        | 102(31.0%) |
| 2. Prosthetic valve assessment           | 71(21.6%)  |
| 3. Dilated Right Heart                   | 56(17.0%)  |
| 4. Assess of Aortic/mitral regurgitation | 25(7.62%)  |
| 5. Pre – PTMC                            | 35(10.6%)  |
| 6. Assessment of Aortic Valve            | 13(3.9%)   |
| 7. Assessment of Mitral Valve            | 11(3.3%)   |
| 8. Assessment of Pulmonary Hypertension  | 11(3.3%)   |
| 9. VSD (ventricular septal defect)       | 02(0.6%)   |
| 10. Ruptured Sinus of Valsalva (RSOV)    | 02(0.6%)   |

**Intraoperative TEE (30; 09%)**

| Indications                                | Numbers   |
|--------------------------------------------|-----------|
| 1. Minimally Invasive Cardiac Surgery-MICS | 20(66.0%) |
| 2. Mitral valve assessment/repair          | 07(2.1%)  |
| 3. Aortic Valve assessment/repair          | 02(0.6%)  |
| 4. VSD repair                              | 01(0.3%)  |

Large-scale studies and clinical guidelines confirm that TEE is generally safe when performed by trained operators. The incidence of major complications is low (<1%), with mortality being exceedingly rare ( $\leq 0.01\%$ ).<sup>2,3</sup> The procedure's safety is attributed to: Standardized protocols (e.g., ASE/SCA guidelines),<sup>1,7</sup> Proper patient selection (avoiding high-risk individuals) & Advances in probe technology (smaller, more flexible designs).

Nevertheless, the invasive nature of TEE means that minor complications (e.g., odynophagia, throat discomfort, transient hypoxia) can occur, necessitating vigilance before, during, and after the procedure.

**TABLE-III****Complications of TEE**

| <b>Major Complications</b>            | <b>Number</b>    |
|---------------------------------------|------------------|
| 1. Death                              | 00(0.0%)         |
| 2. Esophageal perforation             | 00(0.0%)         |
| 3. Major bleed                        | 00(0.0%)         |
| 4. Severe respiratory event           | 00(0.0%)         |
| 5. Ventricular arrhythmia             | 00(0.0%)         |
| 6. Vocal cord injury                  | 00(0.0%)         |
| 7. Pulmonary oedema/Heart Failure     | 01(0.2%)         |
| 8. Tracheal intubation                | 00(0.0%)         |
| <b>Total</b>                          | <b>01(0.2%)</b>  |
| <b>Minor Complications</b>            | <b>Number</b>    |
| 1. Dysphagia.                         | 01(0.2%)         |
| 2. Odynophagia                        | 05(1.3%)         |
| 3. Sore throat                        | 04(1.1%)         |
| 4. Transient hypoxia                  | 00(0.0%)         |
| 5. Dental trauma                      | 00(0.0%)         |
| 6. Arrhythmia (Self- limited, atrial) | 01(0.2%)         |
| 7. Minor pharyngeal bleed             | 02(0.5%)         |
| 8. Lip injury                         | 00(0.0%)         |
| 9. Oral or pharyngeal trauma          | 00(0.0%)         |
| 10. Vasovagal reaction                | 00(0.0%)         |
| 11. Allergic reaction                 | 00(0.0%)         |
| 12. Laryngeal Spasm                   | 00(0.0%)         |
| 13. Bronchospasm                      | 00(0.0%)         |
| 14. Transient Hoarseness              | 01(0.2%)         |
| 15. Infections                        | 00(0.0%)         |
| 16. Unsuccessful probe Insertion      | 02(0.5%)         |
| 17. Procedure interruption            | 02(0.5%)         |
| <b>Total</b>                          | <b>18(5.02%)</b> |

The overall incidence of major complications in our study was 0.2% while overall incidence of minor complications was 5.02%. There was no procedure related mortality. The most common TEE complication (minor) was odynophagia that occurred in 1.3% of the population. Other complications included non-specific sore throat 04(1.1%), unsuccessful probe insertion 02(0.5%), interrupted procedure 02(0.5%), minor pharyngeal bleed 02(0.5%), self-limiting arrhythmia 01(0.2%), dysphagia 01(0.2%) and transient hoarseness 01(0.2%). Only one major complication occurred i.e., patient developed pulmonary edema during the procedure.

Analysis of Complications in different studies show that gastrointestinal injuries are the most feared ones. Out of these the most feared complication is esophageal perforation, though its incidence is extremely low (0.01–0.03%).<sup>1,4</sup> Risk factors include: structural abnormalities (strictures, diverticula, tumors), excessive probe manipulation (especially in uncooperative patients) & recent esophageal surgery or radiation. No such complication was recorded in our study.

In a single center case series of 10,000 consecutive patients<sup>8</sup>, only one case of hypopharyngeal perforation (0.01%), 2 cases of cervical esophageal perforation (0.02%), and no cases of gastric perforation (0%) were reported. No fatalities (0%) were reported.

In a study conducted by Lennon MJ et al<sup>9</sup> major GI complications were more common in intraoperative TEE.

Minor mucosal injuries (e.g., abrasions, Mallory-Weiss tears) are more common but rarely clinically significant. Post-procedure dysphagia or odynophagia should prompt evaluation for deeper injury. Post-procedure record of patients who reported odynophagia and dysphagia in our study showed that although symptoms were transient but they were serially evaluated and followed up. Nothing serious could be traced.

Cardiovascular Events are also reported rarely & include: Arrhythmias: Atrial fibrillation or ventricular ectopy may occur due to mechanical stimulation. Vasovagal reactions: Can lead to bradycardia or hypotension, particularly in anxious patients. Rare cases of myocardial ischemia have been reported in critically ill patients. One patient had atrial arrhythmia in our study. He had transient atrial fibrillation that resolved spontaneously once probe was taken out.

Respiratory complications including laryngeal injury are also reported in literature. No such complication recorded in our pool of patients.

Other reported complications are: Dental damage (loose teeth, crowns): can be mitigated with mouthguard use. No such complication recorded in our patients. Bleeding: Rare but possible in

anticoagulated patients or those with esophageal varices. Usually minor and treated with conservative measures. No case of major bleed recorded in our patients. Minor pharyngeal bleed was reported in 02(0.5%) patients that settled with conservative measures.

Even in critically ill & hemodynamically unstable patients, the mortality is very rare. In a study of 77 critically ill patients<sup>10</sup>, the mortality was nil. In our study eleven (3.07%) patients were hemodynamically unstable. Mortality in our study was also nil.

To avoid complications, risk mitigation strategies should be used to avoid complications. That include: Pre-Procedure Assessment: Exclude contraindications (e.g., esophageal pathology, unstable cervical spine). Evaluate coagulation status in patients on anticoagulants. Intraprocedural Vigilance: Use the smallest feasible probe size. Avoid excessive force during insertion. Maintain continuous hemodynamic and oxygen saturation monitoring. Post-Procedure Monitoring: Observe for delayed complications (hematemesis, chest pain). Withhold oral intake until gag reflex returns (typically 1–2 hours post-sedation).

While TEE provides unparalleled cardiac imaging, noninvasive alternatives (e.g., cardiac MRI, CT angiography) may be preferable in high-risk patients. However, TEE remains indispensable for intraoperative monitoring and detecting conditions like endocarditis, prosthetic valve dysfunction and Atrial septal defects. It is reliably used for assessment of ASD for device closure.<sup>11</sup>

## LIMITATIONS

This study has several limitations including its reliance on data from a single center which may limit generalizability of the findings. Secondly, the retrospective design of the study introduces inherent bias. Additionally, the sample size may not have been enough to detect all the complications. These limitations may be addressed through larger multicenter studies with prospective designs.

## CONCLUSION

TEE is a highly valuable diagnostic tool with a strong safety record when performed appropriately.

Most complications are minor and preventable with meticulous technique and patient selection. Clinicians must remain aware of rare but serious risks (e.g., perforation, aspiration) and adhere to established guidelines to ensure optimal outcomes. Future advancements in probe technology, operator expertise and sedation protocols may further enhance safety.

## CONFLICT OF INTEREST

The authors declare no conflict of interest.

## SOURCE OF FUNDING

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Copyright© 02 Sep, 2025.

## REFERENCES

1. Hahn RT, Abraham T, Adams MS, Bruce CJ, Glas KE, Lang RM, et al. **Guidelines for performing a comprehensive transesophageal echocardiographic examination: Recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists.** J Am Soc Echocardiogr. 2013; 26(9):921-64.
2. Hilberath JN, Oakes DA, Shernan SK, Bulwer BE, D'Ambra MN, Eltzschig HK. **Safety of transesophageal echocardiography.** J Am Soc Echocardiogr. 2010; 23(11):1115-27.
3. Daniel WG, Erbel R, Kasper W, Visser CA, Engberding R, Sutherland GR, et al. **Safety of transesophageal echocardiography: A multicenter survey of 10,419 examinations.** Circulation. 1991; 83(3):817-21.
4. Piercy M, McNicol L, Dinh DT, Story DA, Smith JA. **Major complications related to the use of transesophageal echocardiography in cardiac surgery.** J Cardiothorac Vasc Anesth. 2009; 23(1):62-5.
5. Kallmeyer IJ, Collard CD, Fox JA, Body SC, Shernan SK. **The safety of intraoperative transesophageal echocardiography: A case series of 7200 cardiac surgical patients.** Anesth Analg. 2001; 92(5):1126-30.
6. Seward JB, Khandheria BK, Oh JK, Freeman WK, Tajik AJ. **Critical appraisal of transesophageal echocardiography: limitations, pitfalls, and complications.** J Am Soc Echocardiogr. 1992; 5(3):288-305.
7. Thys DM, Brooker RF, Chalan MK, Connis RT, Duke PG, Nickinovich DG, et al. **Practice guidelines for perioperative transesophageal echocardiography. An updated report by the American Society of Anesthesiologists and the Society of Cardiovascular Anesthesiologists Task Force on Transesophageal Echocardiography.** Anesthesiology. 2010; 112(5):1084-96.

8. Min JK, Spencer KT, Furlong KT, DeCara JM, Sugeng L, Ward RP, et al. **Clinical features of complications from transesophageal echocardiography: A single-center case series of 10,000 consecutive examinations.** J Am Soc Echocardiogr. 2005; 18(9):925-9.
9. Lennon MJ, Gibbs NM, Weightman WM, Leber J, Ee HC, Yusoff IF. **Transesophageal echocardiography-related gastrointestinal complications in cardiac surgical patients.** J Cardiothorac Vasc Anesth. 2005; 19(2):141-5.
10. Khoury AF, Afzadi I, Quinones MA, Zoghbi WA. **Transesophageal echocardiography in critically ill patients: feasibility, safety, and impact on management.** Am Heart J. 1994; 127(5):1363-71.
11. Rehman MU, Sathio S, Chand R, Shaikh AS, Ahsan AK, Rehman F, et al. **Relationship between Transthoracic Echocardiography and Transesophageal Echocardiography in the anatomic and hemodynamic assessment of Secundum Atrial Septal Defects in children and adults.** Pak Armed Forces Med J 2023; 73(3): 715-19.

#### AUTHORSHIP AND CONTRIBUTION DECLARATION

|   |                                                                                                                         |
|---|-------------------------------------------------------------------------------------------------------------------------|
| 1 | <b>Azmat Ehsan Qureshi:</b> Concept and design, data acquisition & interpretation, drafting, approval of final version. |
| 2 | <b>Najeeb Ullah:</b> Data acquisition and interpretation, drafting, approval of final version.                          |
| 3 | <b>Farid Ahmad Chaudhary:</b> Data acquisition and interpretation, drafting, approval of final version.                 |
| 4 | <b>Ali Ammar Shakeel:</b> Data interpretation, Critical review, drafting, approval of final version.                    |
| 5 | <b>Mehroze Sajjad Khan:</b> Drafting, Critical review, approval of final version.                                       |
| 6 | <b>Umer Farooq:</b> Drafting, Critical review, approval of final version.                                               |