HEPATITIS C IN CHILDREN;
Its management

Dr. Abdul Rehman.

ABSTRACT.....The knowledge of the hepatitis C management in children is scanty but rapidly growing. This review will discuss the update in the management of the disease in children. Abbreviations: Hepatitis C virus (HCV); International unit (IU); Polymerase chain reaction (PCR); Sustained virological response (SVR); Rapid virological response (RVR); Early virological response (EVR); End-of-treatment response (ETR)

Key words: Sustained virological response; Peginterferon alfa-2a; Peginterferon alfa-2b; Ribavirin; Chronic hepatitis C; Management; Adverse effects; Liver biopsy.

INTRODUCTION
Hepatitis C virus (HCV) infection is a major global health problem and about 70-100,000 children are infected with HCV. Although HCV can lead to liver transplantation and death during childhood but the disease acquired during childhood have slow progression. Approximately 2% cases may experience rapid histological progression to liver cirrhosis during early childhood.

TO TREAT OR NOT TO TREAT
Treatment is avoided in acute hepatitis as there are 25–50% chances of spontaneous resolution and fulminant hepatic failure from HCV has not been described in children.

The pharmacological efficacy of peginterferon and ribavirin seems to be proven but there are different opinions about ‘who, when and how to treat children infected’. Robinson et al reviewed the literature and concluded that there is no clear indication for antiviral therapy in the majority of children with HCV infection. The arguments in favour of treatment of chronic hepatitis (detectable serum HCV RNA for longer than 6 months) are that it prevents disease progression, removes social stigma, reduction of long-term morbidity, cost-effectiveness on a drug-per-weight basis, and elimination of the virus before life events or behaviors that promote transmission (pregnancy and delivery, or intravenous drug use). Overall the quality of life and psychosocial functioning are not deteriorated by the treatment of children with HCV. The arguments against the treatment are that HCV is mild in most children and the morbidity is delayed, subjecting them to up to 1 year of subcutaneous injections with possible adverse drug effects is as yet unwarranted, and is costly for families. For the majority of HCV-infected children showing minimal fibrosis on biopsy and no active hepatitis, there is no data to support immediate therapy. Children with hepatitis C who demonstrate persistently elevated serum aminotransferases or those with progressive disease (i.e. fibrosis on liver histology) should be considered for treatment.

AIM OF TREATMENT AND TERMINOLOGY
The aim of therapy is to achieve negative conversion of HCV viremia to a level below the detection limit of the qualitative polymerase chain reaction (PCR) technique employed (10–50 IU/ml). Once negativity has been achieved, treatment must continue long enough to ensure eradication of the infection from the liver. Several types of virological responses are used to assess efficacy, labeled according to their timing relative to treatment. These are tested sensitive PCR based quantitative assay which may detect HCV RNA
as low as 10 IU/ml. The definitions of these virological responses are based on the recommendations of American Association for the Study of Liver Diseases 2009.9

Rapid Virological Response (RVR)
HCV RNA is negative in the serum at treatment week 4.

Early Virological Response (EVR)
\[2 \text{ log reduction in HCV RNA level in the serum but not negative as compared to the baseline HCV RNA level (partial EVR)} \] or HCV RNA level negative in the serum at treatment week 12 (complete EVR).

End-of-Treatment Response (ETR)
HCV RNA negative in the serum at the end of treatment (which may be either 24 or 48 weeks).

Sustained Virological Response (SVR)
HCV RNA negative in the serum 24 weeks after cessation of treatment.

Breakthrough
Reappearance of HCV RNA in the serum while still on therapy.

Relapse
Reappearance of HCV RNA in serum after therapy is discontinued.

Nonresponder
May be “null responder” or “partial responder (Failure to clear HCV RNA from serum after 24 weeks of therapy.

Drug Therapy
The peginterferon alfa with or without ribavirin, like in adults, has been used in the treatment of chronic hepatitis C in children. The studies10,11,12,13,14,15 in which peginterferon α-2b was used in children are shown in table-I while studies in which peginterferon α-2a were used16,17,18 are shown in table-II. These studies used peginterferon α-2b in a dose of 1-1.5 mg/kg/week and ribavirin in a dose of 15 mg/kg/day except in the study by Baker et al 2007 who used ribavirin 800 mg/day as the ages of patients were 14-17 years. The dose of peginterferon α-2a used in these studies was 100 µg/m² once weekly while ribavirin, if used, in the same doses as with peginterferon α-2b. Schwarz et al 2006 used only peginterferon α-2a while Schwarz et al 2011 compared the two group, one with ribavirin and other without ribavirin and found that combination therapy was better than monotherapy. Recent studies in adults19,20,21 have shown the superiority of α-2a with equal or better safety over α-2b but there are no randomized studies available in children to compare these two peginterferons in children. It is not possible to infer which peginterferon is better in children. The Infectious Diseases Society of America and the American College of Gastroenterology 2009 recommended the use of peginterferon alfa-2b with ribavirin for hepatitis C in children in a dose of 60 µg/m² weekly given subcutaneously in combination with ribavirin 15 mg/kg daily in 2 divided doses but these recommendations might be reconsidered to include peginterferon α-2a in combination with ribavirin for the treatment as well.

Different HCV genotypes exhibit different sensitivities to treatment both in children and adults. The SVR rates are higher in children with genotype 2 or 3 as compared to genotype 1 and 411,12,13,14,17,18. The SVR rate in genotypes 2 and 3 are 73.3%-100% if treated for 24 weeks while genotypes 1 and 4 show overall SVR rate 22%-54.5% with 48 weeks of therapy as shown in table-I and II.
<table>
<thead>
<tr>
<th>Name of the study</th>
<th>Total cases studied</th>
<th>Age of studied group</th>
<th>Genotype causing infection</th>
<th>Mode of acquiring infection</th>
<th>Liver histopathology of studied children</th>
<th>Case with normal ALT level</th>
<th>Children with history of use of interferon or ribavirin therapy in the past</th>
<th>Any special comments on cases recruited</th>
<th>Ribavirin dosage in per kilogram per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kowala-Piaskowska et al 2007 (10)</td>
<td>30</td>
<td>8-19</td>
<td>Genotype 1 responsible in 97% while genotype 4 in 3% cases</td>
<td>Vertical Parenteral Unknown</td>
<td>Mild severity of disease and staging not exceeding 2 points</td>
<td>-</td>
<td>6 children</td>
<td>20 cases of pediatric malignancy were included, Autoantibodies were tested at the start of study.</td>
<td>15/mg/kg</td>
</tr>
<tr>
<td>Baker et al 2007 (11)</td>
<td>10</td>
<td>11-18</td>
<td>Genotype 1 responsible in 90% while genotype 4 in 3% cases</td>
<td>30%</td>
<td>Grade I was in 70% cases while grade 2 in 30% cases</td>
<td>60% cases</td>
<td>3 children</td>
<td>3 cases of hemophilia 3 and on case of IV drug user were included.</td>
<td>Ribavirin 800 mg/day as the age of patients are 14-17 years</td>
</tr>
<tr>
<td>Jara et al 2008 (12)</td>
<td>30</td>
<td>3-16</td>
<td>Genotype 1 responsible in 87%, genotype 3 in 10% while genotype 4 in 3% cases</td>
<td>10%</td>
<td>Knotd index of 1-8 < 4 was 58%, 4-7 in 31% while ≥8 in 10% while there was no case of cirrhosis</td>
<td>60% cases</td>
<td>8 children Only 1 of these children achieved SVR in this study.</td>
<td>One case of clotting factor deficit, on case of amaglobulinemia, one case of acute lymphocytic leukemia and three cases of cardiomyopathies were included. Autoantibodies were tested at the start of study.</td>
<td>15/mg/kg</td>
</tr>
<tr>
<td>Tajiri et al 2009 (13)</td>
<td>37</td>
<td>7-30</td>
<td>Genotype 1 responsible in 59% while genotype 2 in 41% cases</td>
<td>30%</td>
<td>-</td>
<td>60% cases</td>
<td>18 cases. SVR achieved, during this study, in these cases was 67%</td>
<td>7 cases of malignancy, 5 cases of trisomy 21 were included, in 5 cases Autoantibodies were tested at the start of study.</td>
<td>15/mg/kg</td>
</tr>
<tr>
<td>Wirth et al 2010 (14)</td>
<td>107</td>
<td>3-17</td>
<td>Genotype 1 responsible in 67%, genotype 4 responsible for 100%</td>
<td>30%</td>
<td>Metavir score showed F0 in 12.5%, F1 in 84.6%, F2 in 1.9%, F3 in 1% while none had cirrhosis. Steatosis was absent in 71% while ≥5% in 22% cases.</td>
<td>60% cases</td>
<td>Excluded</td>
<td>-</td>
<td>15/mg/kg</td>
</tr>
<tr>
<td>Al Ali et al 2010 (15)</td>
<td>12</td>
<td>14-17</td>
<td>Genotype 1 responsible in 59% while genotype 4 responsible for 100%</td>
<td>30%</td>
<td>Histologic grade was 1.87 (mean) while fibrosis score was 0.67 (mean) according to Metavir score.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15/mg/kg</td>
</tr>
</tbody>
</table>

Early viral response (EVR) both complete and incomplete
- 70% cases (out of which 71.43% was complete EVR while 28.57% was partial EVR)
- Complete EVR in 86% cases
- Complete EVR in 60% of cases of genotype 1
 - 87% 2
 - 87% 3
 - 80% 4
- Complete EVR in 83% cases

End treatment response (ETR)
- 70% cases
- 60% cases (ETR in case with genotype 1 was 100%, with genotype 2 was 93%, with genotype 3 was 93% and with genotype 4 was 80%)
- Complete EVR in 60% of cases of genotype 1
 - 87% 2
 - 87% 3
 - 80% 4

Sustained viral response (SVR)
- 70% cases
- 60% cases (SVR in cases with genotype 1 was 22% while with genotype 2 was 100%)
- Complete EVR in 83% cases
- SVR in cases with genotype 1 was 22%, with genotype 2 was 100%
- Genotype 1 responsible in 97% while genotype 4 in 3% cases

Breakthrough
- 10%

Relapse
- 13%

Nonresponder
- 30%

The lowest limit of HCV RNA detected by the test used
- 50 IU/ml
- 10 IU/ml
- 50 IU/ml
- 50 IU/ml
- 125 IU/ml
- 50 IU/ml

Genotype causing infection
- Genotype 1 responsible in 97% while genotype 4 in 3% cases
- Genotype 1 responsible in 87%, genotype 3 in 10% while genotype 4 in 3% cases
- Genotype 1 responsible in 59% while genotype 2 in 41% cases
- Genotype 1 responsible in 67%, genotype 4 responsible for 100%

Mode of acquiring infection
- Vertical Parenteral Unknown

Liver histopathology of studied children
- Mild severity of disease and staging not exceeding 2 points
- Knodell index of 1-8 < 4 was 58%, 4-7 in 31% while ≥8 in 10% while there was no case of cirrhosis
- Metavir score showed F0 in 12.5%, F1 in 84.6%, F2 in 1.9%, F3 in 1% while none had cirrhosis. Steatosis was absent in 71% while ≥5% in 22% cases.

Case with normal ALT level
- 40% cases

Children with history of use of interferon or ribavirin therapy in the past
- 6 children
- 3 children
- 8 children. Only 1 of these children achieved SVR in this study.
- 18 cases. SVR achieved, during this study, in these cases was 67%

Any special comments on cases recruited
- 20 cases of pediatric malignancy were included. Autoantibodies were tested at the start of study.
- 3 cases of hemophilia 3 and on case of IV drug user were included.
- One case of clotting factor deficit, on case of amaglobulinemia, one case of acute lymphocytic leukemia and three cases of cardiomyopathies were included. Autoantibodies were tested at the start of study.
- 7 cases of malignancy, 5 cases of trisomy 21 were included, in 5 cases Autoantibodies were tested at the start of study.

Ribavirin dosage in per kilogram per day
- 15/mg/kg
- 15/mg/kg
- 15/mg/kg
- 15/mg/kg

Table I. Studies in children treated a2b + ribavirin c

*exact value is unknown - no data is available N number
Baker et al 200711 and Jara et al 200812 treated genotype 2 and 3 for 24 weeks, Wirth et al 201014 treated genotype 2 and the genotype 3 having viral load \(< 600,000 \text{ IU/ml} \) for 24 week while for 48 weeks if viral load \(\geq 600,000 \text{ IU/l} \) but treatment was stopped at 24 weeks if HCV RNA was positive at 24 weeks or \(< 2 \) log reduction in HCV RNA at 12 weeks of treat and Tajiri et al 200913 treated genotype 2 with 24 or 48 weeks with peginterferon \(\alpha-2b \). Baker et al 200711, Jara et al 200812 and Al Ali et al 201015 treated genotype 1 and 4 for 48 weeks, Tajiri et al 200913 treated genotype 1 for 48 weeks. Kowala-Piaskowska et al 2007 treated
genotype 1 and 4 for 48 weeks but treatment was stopped at 24 weeks if no virological response (except in 4 cases where 48 weeks treatment was given)10. Wirth et al 201014 treated the genotype 1 and 4 for 48 weeks but the treatment was stopped at 24 weeks if HCV RNA was positive at 24 weeks or < 2 log reduction in HCV RNA at 12 weeks of treatment with peginterferon α-2b.

Schwarz et al 200616 treated genotype1 for 48 weeks. Sokal et al 201018 treated genotype 2 and 3 for 24 week while genotype 1,4 and 6 for 48 weeks if HCV RNA became negative at 24 weeks18. Schwarz et al 201117 treated genotype 1, 2 and 3 for 48 weeks but treatment was stopped at 24 weeks if HCV RNA positive17 with peginterferon α-2b

Jara et al 200812 showed that the proportion of patients who attained HCV RNA negativity increased with time during the first 24 weeks of therapy of all genotypes but prolongation of treatment beyond 24 weeks (i.e. 48 weeks) in cases of Genotype 1 and 4 did not improve viral clearance or SVR12. Tajiri et al 200913 showed that 16 out of 22 patients with genotype 1 received 48-week therapy and 12 of the 16 achieved a SVR. The other four had 72-week therapy and all of them achieved a SVR. The Infectious Diseases Society of America and the American College of Gastroenterology 2009 recommended duration of treatment in children for 48 weeks irrespective of genotype9. Hu et al 201022 in a systematic review showed that there was insufficient data to assess the applicability of the week 12 stop rule (stopping therapy at week 12 if there is less than a 2 log drop in HCV RNA) or the efficacy of shortening therapy to 24 weeks in children with genotype 2 and 3. If HCV RNA remains detectable between 12 to 24 weeks of therapy, therapy may be extended to 72 weeks13.

Although there is insufficient data but it may be proposed that, due to the high probability of a favorable response in the case of a sensitive genotype (2,3 genotypes), all patients with genotype 2 and 3 be treated for 24 weeks while in the case of less-sensitive genotypes (1,4 genotypes), re-evaluation be carried out after 24 weeks. If at this point the viral load is negative, treatment is continued up to 48 weeks, otherwise the treatment may be withdrawn, since healing is unlikely to occur even if the full treatment course is administered12,18.

The minimum age at which peginterferon α-2a used was 2 years16 while for peginterferon α-2b it was 3 years12. The Infectious Diseases Society of America and the American College of Gastroenterology 2009 also recommended that all children with chronic hepatitis C with a minimum age of two years should be considered appropriate candidates for treatment9.

ADVERSE EFFECTS OF PEGINTERFERON ± RIBAVIRIN

The adverse effects of peginterferon plus ribavirin are similar to those associated with conventional interferon plus ribavirin but involve fewer injections and immediate injection reactions. The adverse effects noted in different studies done in children on peginterferon ± ribavirin are shown in table-III. Febrile convulsions are a hazard in younger children but the problem did not occur. Reduction or discontinuation (temporary or permanent) of interferon and/or ribavirin may ameliorate adverse effects. However, this may also jeopardize the success of treatment9,23.

Leucocyte, neutrophil and platelet counts tend to decrease during the initial period of treatment and, subsequently, these counts stabilize but may stay below the normal range for the remainder of the treatment period increasing rapidly to baseline values after the completion of treatment18.

Weight loss/height inhibition may occur during the treatment phase but most patients experience compensatory weight gain after the stoppage of treatment12,14,10. Endocrine abnormalities may occur.
during treatment. Detectable antithyroid antibodies are particularly common and clinical hypothyroidism may occur, which rarely become permanent. In other instances abnormally high levels of thyroid-stimulating hormone may occur. Rarely thyrotoxicosis may develop. Insulin dependant diabetes mellitus may develop very rarely. Very limited data shows that in those children who have not received interferon HCV infection associated ophthalmologic changes do not occur. The ophthalmologic complications are infrequent (2-3%) in children who are treated with peginterferon α-2b for HCV but these complications may be serious e.g. ischemic retinopathy and uveitis necessitating, prospective ocular assessment. The effects on eye may be irreversible in adults but because of limited data in children no inference can be drawn.

The most common adverse effect of ribavirin is a reversible hemolytic anemia, which occurs due to accumulation of phosphorylated ribavirin in erythrocytes which shortens the life span of erythrocytes. A fall in hemoglobin level between 2 and 3 g/dL within 4 weeks of starting combination therapy is common. Reticulocyte count increases during therapy but returns to normal thereafter. Anemia is the most common reason for ribavirin dose reduction or treatment discontinuation. Ribavirin may also cause

<table>
<thead>
<tr>
<th>Adverse Effect</th>
<th>Range (%)</th>
<th>Drug does modification*</th>
<th>Drug stopped**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucopenia (10,11,12,13,14,15)</td>
<td>0-67%</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hemoglobin <10gm% (10,11,13,14,15,18)</td>
<td>5-33%</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Neutropenia (11,12,14,15,18)</td>
<td>0-33%</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Thrombocytopenia (13,14,18)</td>
<td>1.5-11%</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever (10,11,12,13,14,15,16,17,18)</td>
<td>54-100%</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Headache (10,12,13,14,16,17,18)</td>
<td>27-67%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Lethargy (10,13,14,18)</td>
<td>7-54%</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Weakness (10,12,14)</td>
<td>15-73%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Weight loss (11,12,14)</td>
<td>19-100%</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Effect on height (12,14)</td>
<td>70-73%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chills (10,14)</td>
<td>16-21%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Lymphadenopathy (10)</td>
<td>6%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Bleeding (11)</td>
<td>9%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anorexia (10,12,13,14,17,18)</td>
<td>8-76%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Vomiting/nausea (10,12,13,14,16,18)</td>
<td>13-45%</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Abdominal pain (10,12,13,14,18)</td>
<td>5-43%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Diarrhoea (10,18)</td>
<td>3-14%</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hepatitis (16,18)</td>
<td>1.5-14%</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Feeling of dry mouth (10)</td>
<td>13%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pain in gingiva (10)</td>
<td>6%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stomatitis (13)</td>
<td>8%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Constipation (12)</td>
<td>10%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Nervous System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irritability (10,12,13,14,16,17,18)</td>
<td>8-34%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sleep disturbance (13,14,15,17,18)</td>
<td>3-27%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Apathy (10,12,13)</td>
<td>5-23%</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Drowsiness (10,15)</td>
<td>15-58%</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
mild lymphopenia, hyperuricemia, itching, rash, cough and nasal stuffiness. Since in most of the studies (except in some cases in the study by Schwarz et al 2008) used both peginterferon and ribavirin it is difficult to differentiate the contribution of each drug for the side effects mentioned in table-III. It is known to be teratogenic and thus it is imperative for persons who receive the drug to use strict contraceptive methods both during treatment and for a period of 6 months thereafter.

THE ROLE OF LIVER BIOPSY IN THE INITIATION OF TREATMENT
The role and utility of liver biopsy in the initiation of
treatment of hepatitis C cases is still debatable, and no
definite consensus exists in any guideline. The
treatment may be started without liver biopsy13,17.

CONCLUSIONS

Peginterferon α-2b and peginterferon α-2a in
combination with ribavirin may be used in children
above two years of age having chronic hepatitis C but
is not indicated in every case. The therapy is not free
from side effects as in adults.

Copyright© 16 Feb, 2013.

REFERENCES

1. Robinson JL, Doucette K. The natural history of
hepatitis C virus infection acquired during childhood.

2. Porto AF, Tormey L, Lim JK. Management of chronic

3. Mohan N, González-Peralta RP, Fujisawa T, Chang MH,
Heller S, Jara P, et al. Chronic Hepatitis C Virus
Infection in Children. J Pediatr Gastroenterol Nutr

4. Serranti D, Buonsenso D, Ceccharelli M, Gargiullo L,
Ranno O, Valentini P. Pediatric hepatitis C infection: to
treat or not to treat...what's the best for the child? Eur

5. Jhaveri R. Diagnosis and management of hepatitis C
(11):983-5.

6. Rodrigue JR, Balistrieri W, Haber B, Jonas MM, Mohan P,
Molleston JP, et al. Peginterferon with or without
ribavirin has minimal effect on quality of life,
behavioral/emotional, and cognitive outcomes in

7. Mack CL, Gonzalez-Peralta RP, Gupta N, Leung D,
Narkewicz MR, Roberts EA, Rosenthal P, Schwarz KB.
NASPGHAN practice guidelines: Diagnosis and
management of hepatitis C infection in infants,
children, and adolescents. J Pediatr Gastroenterol

Diagnosis, Management, and Treatment of Hepatitis

M, Słuzewski W. Adverse effects during the treatment
with pegylated interferon and ribavirin in children
with chronic hepatitis C. Pharmacoepidemiol Drug Saf
2007; 16(10): 1095-103

11. Baker RD, Dee D, Baker SS. Response to pegylated
interferon alpha-2b and ribavirin in children with

12. Robinson JL, Doucette K. The natural history of
hepatitis C virus infection acquired during childhood.

Y, et al. Peginterferon alpha-2b and ribavirin for the
treatment of chronic hepatitis C in Japanese pediatric
and young adult patients: a survey of the Japan
Society of Pediatric Hepatology. Eur J Gastroenterol

14. Wirth S, Ribes-Konincx C, Calzado MA, Bortolotti F,
Zancan L, Jara P, et al. High sustained virologic
response rates in children with chronic hepatitis C
receiving peginterferon alfa-2b plus ribavirin. J

Pegylated interferon alfa-2b plus ribavirin for the
treatment of chronic hepatitis C genotype 4 in

16. Schwarz KB, Mohan P, Narkewicz MR, Molleston JP,
Nash SR, Hu S, et al. Safety, efficacy and pharma-
cokinetics of peginterferon alpha2a (40 kd) in
children with chronic hepatitis C. J Pediatr

17. Schwarz KB, González-Peralta RP, Murray K, Malleston
J, Haber B, Jones M, et al. The combination of ribavirin
and peginterferon is superior to peginterferon and placebo for children and adolescents with chronic hepatitis C. Gastroenterology. 2011;140(2):450-458.

PREVIOUS RELATED STUDIES

Waheed Ahmed, Manzar Zakaria, Syed Badshah Hussain Zaidi. HEPATITIS C; FREQUENCY OF THROMBOCYTOPENIA PATIENTS TREATED WITH INTERFERON (Original) Prof Med Jour 17(1) 117-121 Jan, Feb, Mar 2010.

S. M. Abbas Naqvi, Qurban Ali Khaskheli, Shahid Habib Ansari, Muhammad Shiraz Khan, Muhammad Saeed Talpur. HEPATITIS C VIRUS; PREVALENCE IN BLOOD DONORS IN KARACHI (Original) Prof Med Jour 13(4) 604-607 Oct, Nov, Dec, 2006.

Muhammad Naeem, Ameer Ahmad, Imran Qaisar, Fiaz Ahmad. STATUS OF HEPATITIS C VIRUS (HCV) INFECTIONS; CHILDREN ADMITTED IN PEDIATRIC WARD OF BAHAWAL VICTORIA HOSPITAL BHAHWALPUR (Original) Prof Med Jour 18(3) 445-449 Jul, Aug, Sep 2011.

Faqir Muhammad Tariq, Habib Subhani, Irshad Ahmad, Irshad ul Haq. HEPATITIS C; PREVALENCE IN PARAMEDICAL STAFF OF A TEACHING HOSPITAL(Original) Prof Med Jour 16(2) 168-172 Apr, May, Jun, 2009.

Always leave something to wish for; otherwise you will be miserable from your very happiness.

Baltasar Gracian