HYPONATREMIA;
PREVALENCE OF HYPONATREMIA IN PATIENTS PRESENTING WITH HEPATIC ENCEPHALOPATHY.

Riaz Ahmed Javid1, Ayesha Ghafoor2, Ifrah Ahmed3

ABSTRACT... Objectives: To find out the frequency of hyponatremia in cases of hepatic encephalopathy. Study Design: Cross-sectional study. Setting: Department of Medicine DG Khan Hospital, DG Khan. Period: July 2016 to December 2016. Material and Methods: Total 80 patients with hepatic encephalopathy either male or female were selected for this study. Hyponatremia was assessed in these selected patients. Results: Mean age of the patients was 38.34 ± 11.140 years. Hyponatremia was found in 31 (39%) patients. Hyponatremia was noted in 13 (41.94%) patients of age group 18-36 years and 18 (36.73%) patients of age group 37-55 years. Statistically insignificant association of hyponatremia with age was seen with p value 0.6467. Hyponatremia was found in 21 (40.38%) male patients and 10 (35.71%) female patients. But the difference of frequency of hyponatremia between male and female patients was statistically insignificant with p value 0.8109. Conclusion: Results of this study showed a higher percentage of hyponatremia in patients with HE. Male were more victim of HE as compared to female but insignificant association of hyponatremia with gender is noted. Findings of present study showed that there is insignificant association of hyponatremia with grade of HE, socio-economic status, area of residence and age.

Key words: Hypertension, Hyponatremia, Diabetes Mellitus, Ischemic Stroke.

INTRODUCTION
Cirrhosis is the end result of almost all chronic liver diseases.1 Histopathologically cirrhosis is called a phenomena which alter normal architecture of liver into diffuse fibrosis and morphologically into abnormal nodules. The progression to cirrhosis is a result of chronic progressive injury to liver is varied. It may take 40 years in some cases to as to 6-10 years in some other cases.2 There is no relation between histological findings of liver cirrhosis and clinical presentation of patients.2 Some patients have worse in their histological picture of liver biopsy but have no symptoms. In this way they have normal life expectancy. Some others have worse symptomatology of liver disease (cirrhosis) but have little finding on liver biopsy. In this way they assume to have limited life expectancy. Presentation of cirrhosis having symptoms broadly classified into three categories liver synthetic function, liver detoxification and portal hypertension.2,3 Complications usually seen in cirrhosis are portal hypertension, hepatorenal syndromes and hepatic coma and hepatic encephalopathy (HE).3

HE is labeled one when there is no brain disease but spectrum of neuropsychiatric abnormalities due to liver dysfunction present in cirrhotic patients.2 It includes personality changes, intellectual impairment and alter conscious level. Although it has different stages but overt HE found in 30% to 40% hepatic cirrhosis cases. It directly with patient morbidity and mortality.4 Hospitalization due to HE is associated with 42% survival at one year and 23% at 3 years in followup.5 The common factors leading to HE are GI bleeding, infection, constipation, opiates intake, benzodiazepines, diuretic therapy and high protein diet.6 Patients having advance cirrhosis always have some renal impairment. Kidneys are
malfunctioning to some level leading to retaining to sodium and water. Some of the patients have disproportionate retention of water relatively sodium as a result Hyponatremia and hypo osmolality in them. It effects on HE presentation in clinical symptomology. Provenance of hyponatremia in cases of HE is from 1.5 to 28%.

There is lack of epidemiological studies in our settings, so the rationale of our study was to determine the hospital base frequency of hyponatremia in patients with hepatic encephalopathy at medicine department of, DG Khan Hospital, DG Khan. We have tried to come up with the frequency of hyponatremia Although, the results of this study may serve the baseline data for further studies in this part of the country to put forward suggestion for improvement on this aspect of hepatic encephalopathy.

MATERIAL & METHODS

This cross-sectional study was conducted at Department of Medicine, D.G Khan Hospital, D.G Khan from July 2016 to December 2016. Total 80 patients with Hepatic Encephalopathy with age group (18-55 years) of either gender (Male & Female) admitted to hospital with diagnosis of hepatic encephalopathy of minimum 24 hr duration were selected. Patients with history of renal failure, patients with history of severe vomiting (more than 10 episodes/day), patients with history of diarrhea (more than 10 loose stools/day) were excluded from the study.

Blood sample for serum sodium will be drawn during first 24 hours of hospital admission and sent to laboratory. Findings of lab were entered in pre-designed performa along with demographic profile of all the patients.

OPERATIONAL DEFINITIONS

Hyponatremia

Serum Sodium level < 130 mEq/L defined as hyponatremia.

Hepatic Encephalopathy

Case were diagnosed according to adapted West-Haven Criteria.

Collected data was analyzed by using SPSS version 20. Age, serum sodium level and duration of HE was presented as mean and SD. Gender, Hyponatremia, residence, grade of HE, socio-economic status were presented as frequencies and percentages. Effect modifier like age, gender, duration of hepatic encephalopathy, grade of encephalopathy, residence were controlled through stratification. Post stratification Chi-square test was applied by taking $p < 0.05$.

RESULTS

Total 80 patients of hepatic encephalopathy were recruited for present study. Mean age of the patients was 38.34 ± 11.140 years. Hyponatremia was found in 31 (39%) patients. (Figure-1)

Total 31 (38.75%) patients belonged to age group 18-36 years and 49 (61.25%) patients belonged to age group 37-55 years. Hyponatremia was noted in 13 (41.94%) patients of age group 18-36 years and 18 (36.73%) patients of age group 37-55 years. Statistically insignificant association of hyponatremia with age was seen with p value 0.6467. (Table-I)

Male patients were 52 (65%) and female patients were 28 (35%) and hyponatremia was found in 21 (40.38%) male patients and 10 (35.71%) female patients. But the difference of frequency of hyponatremia between male and female patients was statistically insignificant with p value 0.8109. (Table-II)

Grade 0 HE was noted in 2 (2.5%) patients followed by grade 1 (4.5%), grade 2 8 (10%), grade 3 (15 (18.75%) and grade 4 in 51 (63.75%) patients. Hyponatremia was found in 1 (50%), 1 (25%), 3 (37.5%), 9 (60%) and 17 (33.33%) patients with grade 0, 1, 2, 3 and 4 HE. Statistically insignificant ($P = 0.4183$) association of hyponatremia with grade of HE was noted. (Table-III)

Out of 80 patients of HE, 32 (40%) patients were poor, 25 (31.5%) patients were belonged to middle class and 23 (28.75%) patients were belonged to upper class. Hyponatremia was noted in 11 (34.38%), 10 (40%) and 10 (43.48%) patients respectively in poor, middle and upper class.
class. Insignificant (P = 0.7827) association of socio-economic status with hyponatremia was noted. (Table-IV)

Total 48 (60%) patients belonged to rural area and 32 (40%) patients belonged to urban area. Hyponatremia was seen in 19 (39.58%) and 12 (37.5%) patients respectively in rural and urban patients. But insignificant (P = 1.0000) association of hyponatremia with area of residence was noticed. (Table-V)

Table-I. Association of hyponatremia with age

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Hyponatremia Total</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-36</td>
<td>13 (41.94) 18 (58.06) 31 (38.75)</td>
<td>0.6467</td>
</tr>
<tr>
<td>37-55</td>
<td>18 (36.73) 31 (63.26) 49 (61.25)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>31 (38.75) 49 (61.25) 80</td>
<td></td>
</tr>
</tbody>
</table>

Table-II. Association of hyponatremia with gender

<table>
<thead>
<tr>
<th>Gender</th>
<th>Hyponatremia Total</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>21 (40.38) 31 (59.62) 52 (65)</td>
<td>0.8109</td>
</tr>
<tr>
<td>Female</td>
<td>10 (35.71) 18 (64.29) 28 (35)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>31 (38.75) 49 (61.25) 80</td>
<td></td>
</tr>
</tbody>
</table>

Table-III. Association of hyponatremia with grade of HE

<table>
<thead>
<tr>
<th>Grade of HE</th>
<th>Hyponatremia Total</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 (50) 1 (50) 2 (2.5)</td>
<td>0.4183</td>
</tr>
<tr>
<td>1</td>
<td>1 (25) 3 (75) 4 (5)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3 (37.5) 5 (62.5) 8 (10)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9 (60) 6 (40) 15 (18.75)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>17 (33.33) 34 (66.67) 51 (63.75)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>31 (38.75) 49 (61.25) 80</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

Cirrhosis is one of major causes of death and results in serious complications of cirrhosis like as cites, hepatic encephalopathy and variceal hemorrhage.10

Kidney function and elevated electrolyte levels are responsible for complications in cases of chronic liver disease (CLD) and most of the patients presented with hyponatremia.11

Higher mortality rate was reported in literature in cases of CLD with hyponatremia as compared to with out hyponatremia.12-14 Hyponatremia can induce or aggravate HE, leading to progression of disease and even death.15

In present average age of the cases of HE was 38.34 ± 11.140 years. Total 38.75% patients belonged to age group 18-36 years and 61.25% patients belonged to age group 37-55 years. Hyponatremia was noted in 41.94% patients of age group 18-36 years and 36.73% patients of age group 37-55 years. Statistically insignificant association of hyponatremia with age was seen with p value 0.6467. Achakzai et al6 reported mean age of the patients as 54 years which is higher than our study.

In this study hyponatremia was found in 39% patients. Grade 0 HE was noted in 2.5% patients followed by grade 1 in 5%, grade 2 in 10%, grade
HYPONATREMIA

3 in 18.75% and grade 4 in 63.75% patients. Hyponatremia was found in 50%, 25%, 37.5%, 60% and 33.33% patients with grade 0, 1, 2, 3 and 4 HE. Statistically insignificant (P = 0.4183) association of hyponatremia with grade of HE was noted. In one study by Out of 69 patients with HE 57 had sodium less than 135 (p < 0.001). In a Korean study, prevalence of hyponatremia at a serum sodium 135 mmol/L was 47.9% in hospitalized patients, and that of severe hyponatremia at a serum sodium 130 mmol/L was 27.1%. In fact, the severity of hyponatremia, particularly at serum sodium concentrations ≤130 mmol/L, corresponded to higher risks for developing as cites, hepatic encephalopathy and other complications of cirrhosis, compared with the risks in patients with a serum sodium ≥ 136 mmol/L. Borroni et al. reported hyponatraemia in 30% of cases. In a Pakistani study it was found in 26.7% patients. In one study by SIDDIQUI et al, hyponatremia was found in 35% patients.

Alam et al reported that 28% of patients had one or another electrolyte imbalance. This further confirms that a huge proportion of patients is affected by hyponatremia in our local setup, which may be due to diuretic use. A similar study was done by Maqsood et al reported presence of hyponatremia in 50% of patients, which is higher than our findings. Achakzai et al reported frequency of hyponatremia as 46%. Of which 23(13%) patients had grade 1 HE while 80(45%), 64(36%) and 10(6%) had grades 2, 3 and 4 respectively.

CONCLUSION

Results of this study showed a higher percentage of hyponatremia in patients with HE. Male were more victim of HE as compared to female but insignificant association of hyponatremia with gender is noted. Results of this study also revealed that there is insignificant association of hyponatremia with grade of HE, socio-economic status, area of residence and age.

REFERENCES

