In-line oblique transducer approach for ultrasound guided cannulation of internal jugular vein.

Ehsan Ahmad¹, Liaqat Ali², Khalid Bashir³, Maryam Inayat⁴, Ayesha Asad⁵, Irfan Liaqat Ali⁶

ABSTRACT... Objective: To determine the frequency of successful cannulation of ultrasound assisted inline oblique transducer approach for internal jugular venous cannulation. Study Design: Descriptive Case Series. Setting: Department of Anesthesia and Intensive Care, Hameed Latif Hospital, Lahore. Period: 22-02-2017 to 22-08-2017. Material & Methods: In this study the cases were included of both gender and age between 18 to 65 years. Jugular vein was visualized ultrasonographically in an oblique axis and the needle was inserted in the same plane, aligned with the longitudinal axis of the transducer. Success rate was noted. Results: The mean age of patients was 49.94±10.90 years, male to female ratio of the patients was 1.9:1. In this study the successful cannulation was observed in 145/155 (93.55%) patients. Conclusion: It has been observed in this study that the ultrasound assisted inline oblique transducer approach is successful technique for IJV cannulation.

Key words: Central Venous Catheter (CVC), Internal Jugular Vein (IJV), Inline Oblique Axis, Long-axis (LAX), Short-axis (SAX), Ultrasonography.

INTRODUCTION

Insertion of central venous catheter in internal jugular vein (IJV) is a commonly performed procedure in the intensive care units (ICU), during anesthesia in certain surgeries and also in those cases where peripheral lines are difficult to access. In addition to the advantage of providing a large bore venous access, it also aids for hemodynamic monitoring. According to a survey about five million cannulations are done per year in United States.¹ ²

Central venous cannulation can be accessed via various ways and even without image guidance. The choice depends upon the available resources, competency of the performing staff and urgency of the procedure. The routine insertion of central venous line is performed on the basis of anatomical landmarks which is associated with risk of many complications like pneumothorax, multiple venous or arterial punctures causing hematoma, hemodynamic instability, local site infection, pain, vasovagal reflexes etc.³

Use of ultrasonography shows surrounding structures like muscles, carotid artery, trachea so we can see exact site of internal jugular vein.³ ⁴ This image guided approach can avoid a number of the complications that occur with landmark technique.⁵ ⁶ The different ultrasound probe positions have been described in literature. Most commonly used probe positions are short-axis (SAX) and long-axis (LAX) views. The SAX probe position can only demonstrate the cross-section of IJV so during procedures only tip or shaft of needle can be seen in the shape of a dot shadow, while the LAX approach shows the longitudinal view of IJV and whole needle can be seen. A new approach is an overlap of both of these approaches as oblique probe position which has the unique property with benefits of both long and short axis views. The oblique ultrasound probe positioning approach seems to be much better option as it allows performing dynamic IJV catheter insertion under ultrasonography. The success rate of cannulation with USG guidance ranges from 85% to 99% of the cases.⁷ ⁸
We conducted a descriptive case series study in 155 patients to determine the success rate with ultrasound guided oblique in-plane approach for internal jugular vein cannulation.

We conducted this study to find out the success rate of newly described ultrasound guided oblique in-line approach as advantage of this technique is that it can show us both carotid artery and internal jugular vein along with view of full length needle which seems to be more safe and appropriate.

OBJECTIVE

To determine the frequency of successful cannulation of ultrasound assisted inline oblique transducer approach for internal jugular venous cannulation.

MATERIAL & METHODS

We carried out this descriptive case series study at Hameed Latif Hospital, department of Anesthesia and Intensive Care Lahore during 22-02-2017 to 22-08-2017, 155 cases were enrolled via non probability consecutive sampling according to following criteria.

Inclusion Criteria:
1. Both gender
2. Aged 18-65 year

Exclusion Criteria
1. Signs of Infection at insertion site
2. Any swelling or subcutaneous hematoma at or around the insertion site.
3. History of any Cather or cannula insertion in IJV in past 3 days.
4. Past history of surgical intervention around needle insertion site.
5. Severe coagulopathy; INR >1.8 or platelet <50,000
6. Subcutaneous emphysema

After all the aseptic measures the IJV was ultrasonographically visualized in an oblique axis at 45 degree angle by using linear probe in between SAX and LAX (Picture 1). The needle was inserted in the longitudinal axis of the transducer in the same ultrasound plane, with a negative pressure. With oblique probe position, the view of carotid artery and internal jugular vein was seen on ultrasound screen (Picture 2). Vein was confirmed as collapsible vascular structure with probe pressure. Aspiration of free flow venous blood in the needle was observed with aspiration. Guide wire was inserted after confirming tip of needle in IJV with ultrasound (Picture 3). Then guide wire was confirmed in IJV with ultrasound and labeled as successful cannulation. After that triple lumen central venous catheter was inserted, fixed and dressing was applied. The time taken (seconds) from the Seldinger needle inserted into skin to the moment the guide wire was passed in IJV and confirmed with ultrasound was noted and labeled as cannulation time. Then remaining process of central venous catheter insertion was done under standard protocol. Cannulation time within 180 second was considered as successful cannulation.

Statistical Analysis

SPSS 21.0 was used for data analysis. Effect modifiers were stratified. For quantitative variables, independent sample t test was used while for qualitative variables chi square was used. Post stratification p value ≤ 0.05 was considered as significant.

RESULTS

We enrolled total 155 cases in our study. The mean age of the patients was 49.94±10.90 years with mean value of BMI was 25.06±5.50 kg/m² (Table-I). Out of these 103 (66.45%) patients were male and 52 (33.55%) patients were females. Left side cannulation was noted in 27 (17.42%) patients and right side cannulation was noted in 128 (82.58%) patients. (Table-II). In this study the successful cannulation was observed in 145 (93.55%) patients as in Figure-1 and mean cannulation time of the patients was 1.52±1.072 minutes (Table-I). Regarding age and gender, no significant difference in terms of cannulation success rate was seen as shown in Table-III and IV with p value of 1.0 each. Successful cannulation seen in 60 out of 63 cases with normal BMI and 85 out of 92 with abnormal BMI with p-value=0.74 as in Table-V. Cannulation was successful in all 27 cases with left sided approach and 118 out of 128 with right sided attempt with p value=0.21 as
shown in Table-VI.

![Oblique probe position](image1)

Table-I. Study variables (n= 155)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>49.94±10.90</td>
<td>25-65</td>
</tr>
<tr>
<td>Height</td>
<td>5.55±0.29</td>
<td>4.9-6.3</td>
</tr>
<tr>
<td>Weight</td>
<td>77.11±20.61</td>
<td>29-150</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.06±5.50</td>
<td>11-40</td>
</tr>
<tr>
<td>Mean cannulation time</td>
<td>1.52±1.07</td>
<td>0.4-5</td>
</tr>
</tbody>
</table>

Table-II. Gender and side of cannulation

<table>
<thead>
<tr>
<th>Variables</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>103</td>
<td>66.45</td>
</tr>
<tr>
<td>Female</td>
<td>52</td>
<td>33.55</td>
</tr>
<tr>
<td>Side of cannulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>128</td>
<td>82.58</td>
</tr>
<tr>
<td>Left</td>
<td>27</td>
<td>17.42</td>
</tr>
</tbody>
</table>

Table-III. Comparison of age with successful cannulation

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 50</td>
<td>73</td>
<td>5</td>
<td>78</td>
</tr>
<tr>
<td>> 50</td>
<td>72</td>
<td>5</td>
<td>77</td>
</tr>
</tbody>
</table>

Total

| | Yes | No | 155 |

p-value = 1.0
DISCUSSION

Central venous catheter (CVC) placement is needed during anesthesia, venous access and for the care of critically ill patients for different indications. In USA, on average >5 million central venous catheter are passed every year. In spite of this magnitude of number of procedures performed, the complications rate is still too high 5% to 19%. Ultrasound guided insertion of these catheter leads to decrease in complications and better success rate but there is no standard technique with minimum complications and maximum success rate. So more evidence is required about the most reliable ultrasound guided approach for CVC insertion. \(^9\)\(^-\)\(^11\)

In patients with hemodynamic instabilities and especially in patients with hypovolemia the central venous access is difficult and ultrasound imaging is required to guide for cannulation in the internal jugular vein. Furthermore, in such situation the IJV has the tendency of easily collapsing with both LAX and SAX and thus rendering a limited approach. However, with oblique-axis internal jugular vein can be visualized without being collapsed as the ultrasound probe can be maneuvered easily. \(^9\)\(^-\)\(^11\) In addition, this method provides for optimal ultrasonographic view of the IJV along carotid artery. The tip of needle is visualized on the ultrasound screen as it advances. Then we can see whole needle in length along the tip of needle so we can ensure that needle is not going towards any unwanted structure then it enters into IJV.

In our study the mean cannulation time of ultrasound assisted inline oblique transducer approach for IJV was 1.52±1.072 minutes and this technique was successful in 145 (93.55%) patients. These results were also supported by the results of the previous studies.

A study by Mehdi Fathi et al presented that successful cannulation was seen in 98.7% in blind attempt group using various landmarks and 99.4% in the USG group. According to their study the mean time taken to cannulation was 46.05 and 45.46 seconds in both groups respectively which was shorter than our study. Success rate with ultrasound-guidance is comparable with our study while the difference in time taken can be explained by the fact that procedure was performed by residents and using inline oblique transducer approach. \(^12\)

In another comparative randomized control trial of ultrasound guided versus landmark technique, Denys et al reported a success rate of 100% and 88 respectively. Which again favors of our results, advocating incorporation of ultrasound guidance during central venous cannulation. \(^13\)

Ray BR et al also used USG guidance and denoted the success rate in 90.83% in terms of cannulation. \(^14\) In another randomized trial they compared USG with no image guidance and the success rate was seen in 92% as compared to 44% with no image guidance in the first attempt. \(^15\)
In another study, the success rate was 100% with USG guidance in patients on ventilators. Similar was seen by the studies done by Chuan et al and Batlori et al where this success was seen in 100% and 96.4% of the cases where the latter used the oblique technique and the first attempt success rate was highest.

In a meta-analysis regarding the success rate and complications of the oblique-axis plane, it was demonstrated that ultrasound guided IJV cannulation with oblique-axis plane may also reduce the chances of carotid artery puncture. The in-line oblique-axis technique provide the advantages of the both SAX and LA approaches in one ultrasound guided view. Once mastered, it is likely that with inline oblique axis probe position allowing for visualization of both the carotid artery and IJV while observing the needle advancement into the vein would minimize the risk of many complications associated with CVC insertions.

We did not note number of attempts for successful cannulation which is limitation of our study and our study is observational. More randomized controlled trials are needed to establish best approach for CVC insertion with focus on success rate, number of attempts and complications comparing different techniques.

There is no conflict of interest of any author or institution.

CONCLUSION

It has been observed in this study that the ultrasound assisted inline oblique transducer approach is successful technique for IJV cannulation.

REFERENCES

AUTHORSHIP AND CONTRIBUTION DECLARATION

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Author(s) Full Name</th>
<th>Contribution to the paper</th>
<th>Author(s) Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ehsan Ahmad</td>
<td>Data collection.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Liaqat Ali</td>
<td>Manuscript writing.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Khalid Bashir</td>
<td>Review of manuscript.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Maryam Inayat</td>
<td>Conduct of procedure.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ayesha Asad</td>
<td>Conduct of discussion.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Irfan Liaqat Ali</td>
<td>Data analysis.</td>
<td></td>
</tr>
</tbody>
</table>