HEMATOLOGICAL TOXICITY IN RATS; THERAPEUTIC PROPERTIES OF ANDROGRAPHIS PANICULATA ON OXALIPLATIN INDUCED

Noor ul Ain¹, Nusrat Bano², Anwar Ejaz Beg³, Kamran Hameed⁴, Talha Bin Fayyaz⁵, Rafia Sadaf⁶

ABSTRACT… Objectives: Oxaliplatin causes hematological toxicities in clinical setting which limits its efficacy. The aim of this study is to investigate the therapeutic effects of Andrographis paniculata against hematological toxicity caused by oxaliplatin. Study design: Experimental animal study. Period: Study takes 8 month from March 2015 to Oct 2015. Setting: Dow university animal house. Method: Wistar albino male rats, divided into 3 equals groups (n=6): Group N* was a control group (0.9% normal saline), Group NP0 was Oxaliplatin treated group and Group NP1 was prophylactically treated with Andrographis paniculata followed by Oxaliplatin in order to assess the protective effects of Andrographis paniculata against the hematologic toxicity caused by Oxaliplatin. Results: Prophylactic treatment with Andrographis paniculata (NP1) significantly increases the levels of platelets and neutrophile count compared with the standard (NP0) (p<0.01) and increases the RBCs count and levels of hemoglobin compared with the standard (NP0). Conclusion: Prophylactic treatment with Andrographis paniculata (NP1) was effective in reducing risk of thrombocytopenia, anemia and neutropenia associated with Oxaliplatin.

Key words: Andrographis Paniculata, Hematotoxicity, Oxaliplatin, Rats.

INTRODUCTION

Andrographis paniculata (family Acanthaceae) is a native of tropical and subtropical lands. Andrographis paniculata identified as Hempedu Bumi and generally known as King of Bitter extensively cultivate in the tropical area of India, China and South East Asia.¹ Leaves contain an active phytoconstituent which is Andrographolide² and has anti-inflammatory³ and hepatoprotective properties.⁴ Andrographis paniculata extract improves activity of antioxidant enzymes i.e. glutathione-Transf erase, superoxide dismutase and catalase.⁵ It also considerably reduces lipid peroxidation but significantly enhance concentrations of hepatic glutathione.⁶ By inhibiting cell cycle progression, Andrographolide produces anticancer effects against human colorectal carcinoma LoVo cells.⁷ Andrographis paniculata produces protective effects against carbon tetrachloride (CCl₄) caused lipid peroxidation and liver damage.⁸ Andrographolide inhibits nitric oxide (NO).⁹ and oxygen radical production in neutrophils⁹, inhibits NF-κB (controls DNA transcription and production of cytokine) activity¹⁰, TNF-α and IL-12 production¹¹ and migration of macrophage.¹² The aqueous extract of Andrographis paniculata reduced oxidative stress in lymphocytes isolated from rat when exposed to nicotine.¹³ Andrographolide and 14-deoxy-11,12-didehydroandrographolide drastically inhibited thrombin-induced aggregation of platelet while neoandrographolide has little or no activity.¹⁴

Oxaliplatin is a agent that blocks DNA replication by forming platinum-DNA adducts which leads to cell cycle arrest and cell death.¹⁵ Thrombocytopenia and neutropenia was a frequent toxicity seen during oxaliplatin treatment.¹⁶,¹⁷ Oxaliplatin produces cytotoxic effects by initiating production of reactive oxygen species and make intra- and interstrand cross-links with DNA, DNA-protein adducts and thereby inducing DNA damage and apoptosis.¹⁸,¹⁹
The purpose of this study is to reduce the hematotoxic effects of oxaliplatin and enhances the clinical efficacy of oxaliplatin by using the herbal drug (Andrographis paniculata) which possesses hematoprotective effects.

MATERIAL & METHOD

The experimental study was designed in the Department of Pharmacology, Ziauddin University and conducted in DUHS (Dow University of Health Sciences), succeeding institutional and ethical approval. Three treatment groups (n=6), i.e. each consisting of 6 animals in each group, were designed; N* (control) was the group to which we administered normal saline 0.9%, NP0 (standard) received oxaliplatin and NP1 was the group received prophylactic treatment with Andrographis paniculata followed by oxaliplatin. Second phase of our study was to assess the changes in hematological profile for which complete blood count was conducted of each animal in a group.

Male albino Wistar rats 220 to 310 g were purchased from Dow University animal house. Animals were housed in properly ventilated, spacious animal house of Dow University of health sciences. Relative humidity (65-75%) and temperature 23±2°C was maintained with alternating 12 hr light and 12 hr dark cycles. Animal Food and tap water was provided ad libitum.

Five hundred grams of leaves of Andrographis paniculata were collected, washed and air dried. Leaves were grinded using standard grinding machine. Powder drug was macerated in analytical grade ethanol for 48 hours. Powdered leaves (10 gm) were extracted out successively with 100 ml of ethanol. Extraction was carried out in standard soxhlet apparatus at 40-50°C. The extract concentrate was stored in a refrigerator at 4°C. Extract concentrate of Andrographis paniculata was prepared in 5% DMSO solution (dimethyl sulfoxide) with water for injection for administration by oral route.

The albino wistar rats males were randomized to experimental and control groups, and divided into 3 groups comprises of 6 animals in each group.

Control N

Animals in group N* served as the control group, where 2 ml of 0.9% normal saline was administered i.p for 6 weeks.

Standard NP0

Animals grouped in NP0 received Oxaliplatin 0.8 mg/kg body mass intraperitoneally for one week (day 1 and 6).

Group NP1

Animals in Group NP1 were administered Andrographis paniculata prophylactically by oral route (400 mg/kg body mass/day for 5 weeks) followed by Oxaliplatin 0.8mg/kg i.p for one week (day 1 and 6).

Albino wistar rats were housed for 56 days in animal house. Control time before and after dosing was 7 days with sufficient rat chow. Scheduled sacrifice/cardiac puncture was carried out on 7th day after last dose i.e. on day 56.

Blood drawn by cardiac puncture was collected in anticoagulant tubes. For estimation of hematological parameters, blood (2 ml) was collected in EDTA K3 tubes for examination of Red Blood Cells, Hemoglobin, Leucocytes, Platelets, Neutrophils, Lymphocytes, Eosinophils, Monocytes on automatic Humacount plus Hematology analyzer Model # 16400/S, (Human Germany).

STATISTICAL ANALYSIS

Data was analyzed on SPSS version 19 with paired sample test, p value<0.05 was considered significant, p value<0.01 highly significant and p value<0.001 was considered very highly significant.

RESULTS

Figure-3 & 4 and Table-I. shows that the hemoglobin (Hb) levels highly significant increased (p<0.01) and the levels of RBCs significantly increased (p<0.05) in the group treated with Andrographis paniculata compared with standard (NP0).
Figure-1 and Table-I shows that Leucocyte count was very highly significantly decreased (p<0.001) in the group NP1. Figure-2 and Table-I shows that Platelet count and neutrophil count was highly significantly increased (p<0.01) in group NP1. Figure-1 and Table-I reveal that lymphocyte count was insignificantly affected (p>0.05) in group NP2. Table-I shows that eosinophil count was significantly increased (p<0.05) in group NP1 and the monocyte count was significantly decreased (p<0.05) in group NP1.

<table>
<thead>
<tr>
<th>Hematological profile</th>
<th>Paired Differences</th>
<th>t-value</th>
<th>df*</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (g/dl) NP0 - NP1</td>
<td>-1.133</td>
<td>0.585</td>
<td>-4.742</td>
<td>5</td>
</tr>
<tr>
<td>RBC (x 10⁶/mm³) NP0 - NP1</td>
<td>-0.383</td>
<td>0.279</td>
<td>-3.369</td>
<td>5</td>
</tr>
<tr>
<td>Leucocytes (x 10³/mm³) NP0 - NP1</td>
<td>1.217</td>
<td>0.194</td>
<td>15.356</td>
<td>5</td>
</tr>
<tr>
<td>Platelets (x 10⁹/mL) NP0 - NP1</td>
<td>-80.000</td>
<td>24.948</td>
<td>-7.855</td>
<td>5</td>
</tr>
<tr>
<td>Neutrophils (x 10³/mm³) NP0 - NP1</td>
<td>-0.867</td>
<td>0.378</td>
<td>-5.620</td>
<td>5</td>
</tr>
<tr>
<td>Lymphocytes (x 10³/mm³) NP0 - NP1</td>
<td>0.500</td>
<td>1.225</td>
<td>1.000</td>
<td>5</td>
</tr>
<tr>
<td>Eosinophils (x 10³/mm³) NP0 - NP1</td>
<td>-0.011</td>
<td>0.007</td>
<td>-4.000</td>
<td>5</td>
</tr>
<tr>
<td>Monocytes (x 10³/mm³) NP0 - NP1</td>
<td>0.008</td>
<td>0.005</td>
<td>3.983</td>
<td>5</td>
</tr>
</tbody>
</table>

Table-I. Comparative hematologic profile of NP1 (Andrographis paniculata + oxaliplatin) with Standard NP0 (oxaliplatin) df degree of freedom

p-value< 0.05 (Significant), p-value < 0.01 (highly Significant), p-value < 0.001 (very highly Significant)
DISCUSSION
Prophylactic treatment with Andrographis paniculata increases the platelet count compared with the standard (NP0). Thrombocytopenia was a frequent toxicity seen during oxaliplatin therapy. It occurs at any grade up to 70% of patients and leading to delays or even discontinuation of the chemotherapy. The present study indicates that the prophylactic treatment with the Andrographis paniculata overcome the reduce levels of platelets induced by oxaliplatin i.e. reduced the occurrence of thrombocytopenia induced by Oxaliplatin. Prophylactic treatment with Andrographis paniculata increases neutrophil count compared with the standard (NP0). There was higher incidence of grade 3 or 4 neutropenia associated with oxaliplatin therapy. This reveals that the prophylactic treatment with this agent decreases the incidence of neutropenia associated with Oxaliplatin and increases the efficacy of oxaliplatin. Lymphocyte count was insignificantly decreased in the group prophylactically treated with Andrographis paniculata (NP1). Andrographolide inhibits nitric oxide (NO) and oxygen radical production in neutrophils and inhibits macrophage migration as discussed above; indicate anti-inflammatory effects of Androgaphis paniculata. Serious anemic condition was not frequently associated with Oxaliplatin except Evans’ syndrome and immune hemolytic anemia which was rarely reported adverse events with oxaliplatin. Prophylactic treatment with extract of Andrographis paniculata was effective in reducing the risk of thromboctopenia and neutropenia induced by oxaliplatin. Prophylactic treatment with Andrographis paniculata increases the levels of RBC and hemoglobin compared with standard (NP0) i.e. the drug have the potential to decrease the occurrence of anemia caused by Oxaliplatin.

CONCLUSION
Prophylactic treatment with Andrographis paniculata was effective in reducing the risk of thromboctopenia and neutropenia induced by oxaliplatin. Prophylactic treatment with Andrographis paniculata increases the levels of RBC and hemoglobin compared with standard (NP0) i.e. the drug have the potential to decrease the occurrence of anemia caused by Oxaliplatin.

REFERENCES

